Précipitation et produit de solubilité

I - Produit de solubilité

Dans une solution saturée de chlorure d'argent, AgCl solide coexiste avec AgCl dissous (sous forme Ag+ et Cl-):

$$\text{AgCl}_s \rightleftarrows \text{Ag}^+ + \text{Cl}^- \; , \; \; \text{K} = \frac{[\text{Ag}^+] \cdot [\text{Cl}^-]}{[\text{AgCl}_s]} \; \; \text{mais} \; [\text{AgCl}_s] = 1 \; \; \text{d'où} \; \; \text{K}_s = [\text{Ag}^+] \cdot [\text{Cl}^-] = 10^{-9.75} (\text{pK}_s = 9.75)$$

1. Solubilité (dans l'eau pure).

$$\begin{split} & \text{AgCI}_s \rightleftarrows \text{Ag}^+ + \text{CI}^- \ \ \text{et} \quad [\text{Ag}^+] = [\text{CI}^-] \ \ \text{donc} \ \ [\text{Ag}^+] = \sqrt{K_s} \quad \text{d'où} \quad S = [\text{Ag}^+] = [\text{CI}^-] = 10^{-4.87} \text{mole.I}^{-1} \\ & \text{CaF}_{2(s)} \rightleftarrows \text{Ca}^{2+} + 2\text{F}^- \text{, } K_s = \quad [\text{Ca}^{2+}] \cdot [\text{F}^-]^2 = 10^{-10.4} \text{ , } \quad [\text{F}^-] = 2[\text{Ca}^{2+}] = 2 \cdot \sqrt[3]{\frac{K_s}{4}} \quad \text{et} \quad S = 2.15 \cdot 10^{-4} \text{mole.I}^{-1} \end{split}$$

2. Précipitation par excès de réactif

On prend une solution d'ions Ag^+ et on ajoute des ions $C\Gamma$: comme $K_s = [Ag^+] \cdot [CI^-]$ la précipitation commence dès que $[Ag^+] \cdot [C\Gamma] \ge K_s$; la précipitation des ions Ag^+ sera d'autant plus complète ($[Ag^+]$ petit) que $[C\Gamma]$ sera grand.

• Effet d'ions communs - ions « étrangers » (ou passifs).

C'est le cas si l'on dissout AgCl dans une solution contenant déjà un composé très soluble d'un ion commun (KCl ou AgNO₃ par exemple) ; on constate que la solubilité de AgCl diminue.

Soit c la molarité initiale en KCl et $S_0 = [Ag^+]$ la solubilité dans l'eau pure de AgCl, la relation d'électroneutralité est : $[Cl^-] + [OH^-] = [Ag^+] + [K^+] + [H^+]$, comme la solution est pratiquement neutre $[Cl^-] = [Ag^+] + [K^+] + [H^+] - [OH^-] \approx S + c$, et $K_{s0} = S(S + c)$ mais S est petit devant c, il reste : $K_{s0} \approx S \cdot c$. Pour $c = 10^{-2}$ mole. l^{-1} , on aura $S = 1.76 \cdot 10^{-8}$ mole. l^{-1} au lieu de $1.33 \cdot 10^{-5}$ mole. l^{-1} .

3. Application à la séparation par précipitation.

Dans le mélange équimoléculaire d'ions Be^{2+} , Mg^{2+} , Pb^{2+} et Fe^2 ($[M^{2+}]_{initial} = 1$), quels ions peut-on séparer en les précipitant sous forme d'hydroxyde ?

	Be(OH) ₂	Mg(OH) ₂	Pb(OH) ₂	Fe(OH) ₂
pK_s	21	11.15	16	15

- \oplus Début de précipitation à M^{2+} $M(OH)_2$ $\geq 10^3$ ou M^{2+} $= 0.999 \approx 1$ donc M^{2+} $= 0.999 \approx 1$
- \oplus Fin de précipitation à $\frac{[M^{2+}]}{[M(OH)_2]} \ge 10^{-3}$ ou $[M^{2+}] \approx 0.001$ donc $pM^{2+} = 3$

$$M(OH)_2 \rightleftharpoons M^{2+} + 2OH^{-}$$

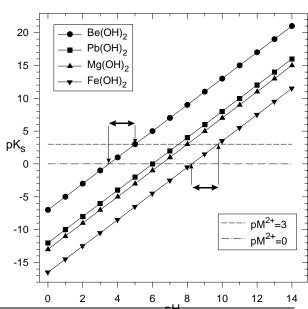
$${\rm K_s} = [{\rm M}^{2^+}] \cdot [{\rm OH}^-]^2 \ \ \, {\rm et} \ \ \, {\rm K_e} = [{\rm H}^+] \cdot [{\rm OH}^-] = {\rm 10}^{-14}$$

$$[M^{2^+}] = \ \frac{K_s \cdot [H^+]^2}{K_e^2} \ \ \text{on \ en tire}$$

$$pM^{2+} = 2pH + pK_s - 28$$

Appliqué aux différents ions :

$$pBe^{2+} = 2pH - 7$$


$$pMg^{2+} = 2pH - 16.85$$

$$pPb^{2+} = 2pH - 12$$

$$pFe^{2+} = 2pH - 13$$

On trace le graphe $pM^{2+}=f(pH)$.

On peut séparer Be²⁺ (fin de précipitation avant celle de Pb²⁺), et Mg²⁺ (début de précipitation après la fin de précipitation de Fe²⁺).

II - Les complexes et la précipitation.

Diagrammes de distribution.

On considère un cation métallique M^{n^+} et un ligand L qui forment des complexes successifs ML, ML₂, ML_n. (constantes de dissociation successives K_{D_1} , K_{D_2} K_{D_n}). Les relations suivantes expriment la conservation de la matière et les coefficients de formation α de chacune des formes sous lesquelles on retrouve le cation M^{n^+} :

$$\begin{split} [M] + \sum_{i=1}^{n} [ML_i] &= c_0 \qquad \text{et} \quad \alpha_0 = \frac{[M]}{c_0} \ ; \ \alpha_1 = \frac{[ML]}{c_0} \ ; \ \dots \dots; \quad \alpha_n = \frac{[ML_n]}{c_0} \quad \text{avec} \quad \sum_{i=0}^{n} \alpha_i = 1 \end{split}$$
 On tire :
$$[M] = \alpha_0 \cdot c_0 \ ; \quad [ML] = \alpha_1 \cdot c_0 \ ; \quad \dots \dots; \quad [ML_n] = \alpha_n \cdot c_0$$

On reporte dans les K_D:

$$\begin{split} \mathsf{K}_{\mathsf{D_1}} &= \frac{[\mathsf{M}] \cdot [\mathsf{L}]}{[\mathsf{ML}]} = \frac{\alpha_0 \cdot [\mathsf{L}]}{\alpha_1} & \text{il vient} \quad \alpha_1 = \frac{\alpha_0 \cdot [\mathsf{L}]}{\mathsf{K}_{\mathsf{D_1}}} \\ \mathsf{K}_{\mathsf{D_2}} &= \frac{[\mathsf{ML}] \cdot [\mathsf{L}]}{[\mathsf{ML}_2]} = \frac{\alpha_1 \cdot [\mathsf{L}]}{\alpha_2} & \alpha_2 = \frac{\alpha_0 \cdot [\mathsf{L}]^2}{\mathsf{K}_{\mathsf{D}_1} . \mathsf{K}_{\mathsf{D}_2}} \end{split}$$

$$K_{D_n} = \frac{[ML_{n-1}] \cdot [L]}{[ML_n]} = \frac{\alpha_{n-1} \cdot [L]}{\alpha_n} \qquad \qquad \alpha_n = \frac{\alpha_0 \cdot [L]^n}{K_{D_1} \cdot K_{D_2} \cdot \cdots \cdot K_{D_n}}$$

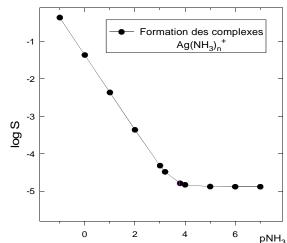
On peut alors écrire :

$$\begin{split} \alpha_0 &= \frac{1}{1 + \frac{[L]}{K_{D_1}} + \frac{[L]^2}{K_{D_1} K_{D_2}} + \dots + \frac{[L]^n}{K_{D_1} K_{D_2} \dots K_{D_n}}} = \frac{1}{D} \qquad ; \qquad D = f(pL) \\ \alpha_1 &= \frac{[L]}{K_{D_1} \cdot D} \; ; \quad \alpha_2 = \frac{[L]^2}{K_{D_1} \cdot K_{D_2} \cdot D} \; ; \quad \dots \dots \; ; \; \alpha_n = \frac{[L]^n}{D \cdot \prod_{i=1}^n K_{D_i}} \qquad \text{On pourrait tracer} \; \; \alpha_i = f(pL) \end{split}$$

2. Dissolution d'un précipité par complexation

• Exemple du chlorure d'argent en milieu ammoniacal (argenti-ammines) :

Si on ajoute à un précipité de chlorure d'argent AgCl une quantité suffisante de NH_3 aqueux, le précipité disparaît par formation d'un ion complexe soluble :


$$AgCl_{s} \rightleftharpoons Ag^{+} + Cl^{-} \quad pK_{s} = 9.75$$

$$Ag^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})^{+} \quad pK_{D_{1}} = 3.2$$

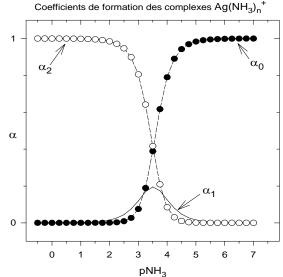
$$Ag(NH_{3})^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})^{+}_{2} \quad pK_{D_{2}} = 3.83$$

$$Ag^{+} + 2NH_{3} \rightleftharpoons Ag(NH_{3})^{+}_{2} \quad pK_{D} = 7.03$$

Solubilité: on peut étudier la variation de la solubilité S du chlorure d'argent avec la concentration en NH $_3$. La solubilité S est égale à $[Ag_{total}^+]$ (concentration d'argent non précipité sous toutes ses formes) et/ou à $[Cl^-]$:

$$\begin{split} S = [Ag_{total}^{+}] = [Ag^{+}] + [Ag(NH_{3})^{+}] + [Ag(NH_{3})_{2}^{+}] = [Ag^{+}] \cdot \left\{ 1 + \frac{[Ag(NH_{3})^{+}]}{[Ag^{+}]} + \frac{[Ag(NH_{3})_{2}^{+}]}{[Ag^{+}]} \right\} = [Cl^{-}] \\ S^{2} = [Ag_{total}^{+}] \cdot [Cl^{-}] = \underbrace{[Ag^{+}] \cdot [Cl^{-}]}_{K_{0}^{\circ}} \cdot \left\{ 1 + \frac{[NH_{3}]}{K_{D_{1}}} + \frac{[NH_{3}]^{2}}{K_{D_{1}} \cdot K_{D_{2}}} \right\} \\ log S = \frac{1}{2} (log(1 + \frac{[NH_{3}]}{K_{D_{1}}} + \frac{[NH_{3}]^{2}}{K_{D_{1}} \cdot K_{D_{2}}}) - pK_{s}^{0}) \quad ; \quad \text{On trace} \quad log S = f(pNH_{3}) \end{split}$$

On constate bien que plus la concentration en NH_3 augmente (plus pNH_3 diminue), plus la solubilité d'AgCl augmente. On peut ainsi évaluer la quantité de NH_3 nécessaire à la dissolution d'une masse donnée de AgCl : $(A. N. : pour pNH_3=0 \ ([NH_3]=1 \ mole/l)$ S=0.04 mole/l à comparer à la valeur trouvée en I - 1.).


Etude des coefficients de formation des complexes :

$$pK_{D_1} = 3.2$$
; $pK_{D_2} = 3.83$; $\underline{A.N.}$: $c_0 = 10^{-2} \, mole \cdot l^{-1}$

$$\begin{split} &\text{ici} & D = 1 + \frac{[NH_3]}{K_{D_1}} + \frac{[NH_3]^2}{K_{D_2} \cdot K_{D_2}} \\ &\alpha_0 = \frac{1}{D} & \Leftrightarrow & \left\{ \frac{[Ag^+]}{C} \right. \end{split}$$

$$\begin{split} \alpha_1 &= \frac{[\mathsf{NH}_3]}{\mathsf{D} \cdot \mathsf{K}_{\mathsf{D}_1}} & \qquad \Leftrightarrow & \left\{ \frac{[\mathsf{Ag}(\mathsf{NH}_3)^+]}{\mathsf{c}_0} \right\} \\ \alpha_2 &= \frac{[\mathsf{NH}_3]^2}{\mathsf{D} \cdot \mathsf{K}_{\mathsf{D}} \cdot \mathsf{K}_{\mathsf{D}}} & \Leftrightarrow & \left\{ \frac{[\mathsf{Ag}(\mathsf{NH}_3)_2^+]}{\mathsf{c}_0} \right\} \end{split}$$

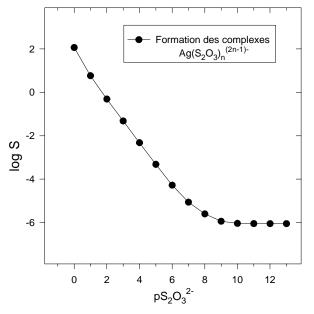
On constate que le complexe $Ag(NH_3)^+$ participe peu dès que $[NH_3] > 10^{-2}$, l'argent se trouve sous la forme $Ag(NH_3)_2^+$.

• Exemple du thiosulfate d'argent.

Les émulsions photographiques contiennent essentiellement des particules de AgBr dispersées dans de la gélatine. Les grains de AgBr touchés par un photon lors de l'exposition à la lumière subissent une réduction $Ag^+ + hv \rightleftharpoons Ag^+$, la phase de <u>révélation</u> consiste à transformer les zones initiées en Ag^0 . Cependant il reste de grandes quantités de AgBr (peu soluble $pK_{s^0} = 12.1$) non exposé qui reste sensible à la lumière. Il est nécessaire de « fixer » (extraire puis récupérer) cet argent inutile et dommageable pour la conservation du film (c'est en même temps une bonne affaire). C'est la <u>fixation</u>. L'argent est complexé par l'ion thiosulfate $S_2O_3^{2-}$ (le fixateur contient $Na_2S_2O_3$) qui forme des complexes solubles du type $Ag(S_2O_3^{2-})_n^{(2n-1)-}$ avec n=1, 2, 3 (respectivement $pK_{D_n} = 8.82, 4.64$ et 0.69

Solubilité de l'argent (issu de AgBr_s) : un traitement analogue à celui réalisé pour AgCl en milieu ammoniacal, conduit à l'expression suivante de la solubilité :

$$\label{eq:sum} log\,S = \frac{1}{2}(log(1 + \frac{[S_2O_3^{2-}]}{K_{D_s}} + \frac{[S_2O_3^{2-}]^2}{K_{D_s} \cdot K_{D_s}} + \frac{[S_2O_3^{2-}]^3}{K_{D_s} \cdot K_{D_s} \cdot K_{D_s}}) - pK_s^0) \quad ; \quad On \; trace \quad log\,S = f(pS_2O_3^{2-}) + \frac{[S_2O_3^{2-}]^3}{K_{D_s} \cdot K_{D_s} \cdot K_{D_s}} + \frac{[S_2O_3^{2-}]^3}{K_{D_s} \cdot K_{D_s} \cdot K_{D_s} \cdot K_{D_s} \cdot K_{D_s}} + \frac{[S_2O_3^{2-}]^3}{K_{D_s} \cdot K_{D_s} \cdot K_{D_s} \cdot K_{D_s} \cdot K_{D_s} \cdot K_{D_s} \cdot K_{D_s}} + \frac{[S_2O_3^{2-}]^3}{K_{D_s} \cdot K_{D_s} \cdot K_{D$$


n	3	2	1
pK_D	0.69	6.64	8.82
S (mole/l)	13.8	1.55 10 ⁻⁵	1.03 10-6
S (AgBr g/l)	2594	9.0	2.40 10-4

Sur le graphe et dans le tableau, on constate que la solubilité croît très vite dans l'intervalle 0.69-6.64; il faut utiliser une solution dont le $pS_2O_3^{2-} \approx 4$.

Domaines de prédominance : Cet exemple est une occasion de repratiquer la notion de domaine de prédominance au sens utilisé en acidimétrie (particule échangée : H^+) mais ici la particule échangée est $S_2O_3^{2-}$.

On peut écrire la suite des équilibres de dissociation des complexes (le pK_D est alors identique au pK_a). On aura :

$$\begin{split} &\text{Ag}(S_2O_3^{2^-})_3^{5^-} \rightleftarrows \text{Ag}(S_2O_3^{2^-})_2^{3^-} + S_2O_3^{2^-} & \text{avec pK}_{D_3} = 0.69 \\ &\text{Ag}(S_2O_3^{2^-})_2^{3^-} \rightleftarrows \text{Ag}(S_2O_3^{2^-})^- + S_2O_3^{2^-} & \text{avec pK}_{D_2} = 6.64 \\ &\text{Ag}(S_2O_3^{2^-})^- \rightleftarrows \text{Ag}^+ + S_2O_3^{2^-} & \text{avec pK}_{D_1} = 8.82 \end{split}$$

On peut ainsi représenter les domaines de prédominance des 4 espèces présentes :

$$\frac{\text{Ag(S}_2\text{O}_3^{\ 2})_3^{\ 5} \quad \text{Ag(S}_2\text{O}_3^{\ 2})_2^{\ 3} \quad \text{Ag(S}_2\text{O}_3^{\ 2})}{0.69 \quad 6.64 \quad 8.82 \quad \text{pS}_2\text{O}_2^{\ 2}}$$

On vérifie qu'à $pS_2O_3^{2-} \approx 4$ l'argent se trouve alors solubilisé essentiellement sous forme $Ag(S_2O_3^{2-})_2^{-3}$.

La connaissance des domaines de prédominance complète celle de la solubilité qui reste cependant la grandeur la plus intéressante.

III - Influence du pH sur la solubilité d'un sel peu soluble.

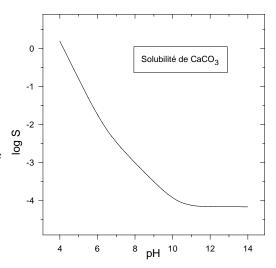
Si les espèces résultant de la dissolution du sel peu soluble ont des propriétés acido-basiques, la solubilité dépendra du pH. Dans le cas d'un sel $M_m A_n \rightleftharpoons m M^{n+} + n A^{m-}$, si A^{m-} est la base conjuguée d'un acide faible, les équilibres acido basiques vont participer :

$$\begin{split} &H_m A \rightleftarrows H^+ + H_{m-1} A^- \qquad \text{avec } K_{a_1} = \frac{[H^+] \cdot [H_{m-1} A^-]}{[H_m A]} \qquad \Leftrightarrow K_{D_n} \\ &H_{m-1} A^- \rightleftarrows H^+ + H_{m-2} A^{2-} \qquad \text{avec } K_{a_2} = \frac{[H^+] \cdot [H_{m-2} A^{2-}]}{[H_{m-1} A^-]} \qquad \Leftrightarrow K_{D_{(n-1)}} \\ &\dots \\ &H A^{(m-1)-} \rightleftarrows H^+ + A^{m-} \qquad \text{avec } K_{a_m} = \frac{[H^+] \cdot [A^{m-}]}{[H A^{(m-1)-}]} \qquad \Leftrightarrow K_{D_1} \end{split}$$

La solubilité du sel peut alors s'écrire : $S = \frac{[M^{n+}]}{m} = \frac{\sum_{i=0}^{i=m} [H_i A^{(m-i)^-}]}{n}$ avec $K_s = [M^{n+}]^m \cdot [A^{m^-}]^n$ tant que la solution est saturée. On remarquera l'analogie avec la complexation décrite au II (la particule est ici H^+).

1. Exemple des carbonates alcalino-terreux

	MgCO ₃	CaCO ₃	SrCO ₃	BaCO ₃
pK_s	5.0	8.32	10.0	8.30

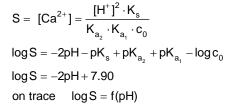

Eau pure : on obtient l'expression de la solubilité en négligeant la formation du complexe $Ca(HCO_3^-)^+$:

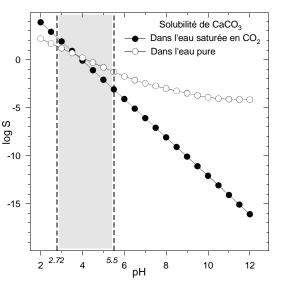
$$\begin{split} H_2CO_3 \; & (CO_2, H_2O) \rightleftharpoons H^+ + HCO_3^- \qquad pK_{a_1} = 6.4 \\ & HCO_3^- \rightleftharpoons H^+ + CO_3^{2-} \qquad pK_{a_2} = 10.3 \\ S = \; & [CO_3^{2-}] + [HCO_3^-] + [CO_2, H_2O] \\ log S = & \frac{1}{2} (log(1 + \frac{[H^+]}{K_{a_2}} + \frac{[H^+]^2}{K_{a_2} \cdot K_{a_1}}) - pK_s^0) \end{split}$$

On trace $\log S = f(pH)$ pour Ca^{2+}

Valeurs de S aux pK_a et au pH d'une eau carbonatée normale (non saturée en CO_2).

pН	5.5	6.4	10.3
S (mole/l)	0.05	8.7 10 ⁻³	9.8 10 ⁻⁵
S (CaCO ₃ g/l)	5.2	0.87	9.8 10 ⁻³




le complexe $Ca(HCO_3^-)^+$ alors :

Eau saturée en CO_2 ; la concentration est imposée: $c_0 \approx [CO_2, H_2O] = 3.0 \text{ mole} \cdot I^{-1}$, pH=2.72.

$$(CO_2, H_2O) \rightleftharpoons H^+ + HCO_3^- \quad ([HCO_3^-] = \frac{K_{a_1} \cdot c_0}{[H^+]})$$

$$\begin{split} HCO_3^- & \rightleftarrows H^+ + CO_3^{2-} \quad donc \quad [CO_3^{2-}] = \frac{K_{a_2} \cdot K_{a_1} \cdot c_0}{[H^+]^2} \\ la \quad solubilit\'e \quad s'\'ecrit: \quad S = [Ca^{2+}] + [Ca(HCO_3^-)^+] \quad ; \quad si \quad on \quad n\'eglige \end{split}$$

La courbe de solubilité de CaCO3 dans l'eau pure a été reportée avec celle obtenue en solution saturée en CO2.

L'eau pure carbonatée naturellement par le gaz carbonique de l'air a un pH≈5.5 , la zone grisée représente le domaine de pH des eaux qui ont dissous du CO_2 (par barbotage de gaz) ou des ions HCO_3^- ou/et CO_3^{2-} en traversant des sols riches en carbonates minéraux. On peut faire les remarques suivantes :

- \Diamond la dissolution de CO_2 dans l'eau provoque la diminution de la solubilité du calcaire (si on fait barboter du CO_2 dans une solution contenant des ions Ca^{2+} , on précipite $CaCO_3$).
- ♦ les eaux pétrifiantes correspondent à l'intersection à pH=2.72 avec la courbe noire ; du CO₂ se dégageant (pour des raisons d'équilibre avec l'atmosphère, ou par choc) la concentration en CO₂ diminue, le pH augmente, la solubilité de CaCO₃ diminue : le calcaire se dépose.
- ♦ Pour dissoudre du calcaire, il faut diminuer le pH (attaque acide).

IV - La solubilité des sels.

	Solubilité	Exceptions
NO_3^-	Tous solubles, très hydratés	
Cl ⁻	solubles	$AgCl, Hg_2Cl_2, PbCl_2$
SO_4^{2-}	souvent solubles	sulfates alcalino-terreux et de plomb
CO ₃ ²⁻	insolubles	carbonates alcalins et d'ammonium
OH-	insolubles	hydroxydes alcalins, $Sr(OH)_2$, $Ba(OH)_2$, $Ca(OH)_2$ est peu soluble,
S 2-	insolubles	sulfures alcalins , alcalino-terreux et d'ammonium

Un sel qualifié d'insoluble se caractérise par un pK_s très grand.